Indian Statistical Institute, Bangalore

M. Math.

First Year, Second Semester
Functional Analysis
Mid-term Examination
Maximum marks: 100
Date: February 25, 2020
Time: 3 hours
Instructor: B V Rajarama Bhat
(1) Show that any two norms on a finite dimensional normed linear space over \mathbb{R} are equivalent.
(2) Let $(X,\|\cdot\|)$ be a normed linear space. Let the unit sphere of X be defined by:

$$
S_{1}(X)=\{x \in X:\|x\|=1\}
$$

Let D be a convex subset of $S_{1}(X)$ and $u, v \in D$ with $u \neq v$. (i) Show that $\|u+v\|=$ $\|u\|+\|v\|$. (ii) Show that u, v are linearly independent. (iii) Give an example of a pair of vectors u, v in some normed linear space X as above.
(3) Let $C_{\mathbb{R}}[0,1]$ be the Banach space of real valued continuous functions on $[0,1]$ with

$$
\begin{equation*}
\|f\|=\sup \{|f(t)|: t \in[0,1]\} \tag{15}
\end{equation*}
$$

for $f \in C_{\mathbb{R}}[0,1]$. Define $T: C_{\mathbb{R}}[0,1] \rightarrow C_{\mathbb{R}}[0,1]$ by

$$
T f(t)=t \int_{0}^{t} f(s) d s \forall f \in C_{\mathbb{R}}[0,1]
$$

(i) Show that T is a bounded linear map. (ii) Show that T is $1-1$ but not onto.
(4) Let $\left\{x_{n}\right\}_{n \geq 1}$ and $\left\{y_{n}\right\}_{n \geq 1}$ be Cauchy sequences in a normed linear space X. Show that $\left\{\left\|x_{n}-y_{n}\right\|\right\}_{n \geq 1}$ is a convergent sequence. Give an example of this kind where $\left\{x_{n}-y_{n}\right\}_{n \geq 1}$ is not convergent.
(5) Let $(X,\|\cdot\|)$ be a normed linear space over \mathbb{R} and let $f: X \rightarrow \mathbb{R}$ be a non-zero bounded linear functional. Define $N=\{x \in X: f(x)=0\}$. For $x \in X$, define

$$
d(x, N):=\inf \{\|x-y\|: y \in N\}
$$

Show that

$$
\begin{equation*}
d(x, N)=\frac{|f(x)|}{\|f\|} \tag{15}
\end{equation*}
$$

(6) Let l^{2} be the Hilbert space of square summable sequences of complex numbers with standard ortho-normal basis $\left\{e_{n}: n \in \mathbb{N}\right\}$. Define $T e_{1}=e_{2}$ and $T e_{n}=e_{n-1}+$ $e_{n+1}, \forall n \geq 2$. (i) Show that T extends to a bounded linear operator on l^{2}. (ii) Compute T^{*}. (iii) Show that 1 is not an eigenvalue of T.
(7) Let Y be a closed subspace of a Banach space X. The annihilator of Y, denoted by Y^{a}, is defined as

$$
Y^{a}:=\left\{f \in X^{\prime}: f(y)=0 \forall y \in Y\right\}
$$

where X^{\prime} is the dual space of X. (i) Show that Y^{a} is a closed subspace of X^{\prime} and $\left(Y^{a}\right)^{a}$ is a closed subspace of $X^{\prime \prime}$. (ii) Suppose $i: X \rightarrow X^{\prime \prime}$ is the canonical map. Show that $i(Y) \subseteq\left(Y^{a}\right)^{a}$. (iii) Show that if X is reflexive then $i(Y)=\left(Y^{a}\right)^{a}$.

